

Tang Li, Zou Yunyun, Wu Jie

School of Economics and Finance Zhanjiang University of Science and Technology Zhanjiang, China

Introduction or abstract

Chikan Old Street, a 1.2 km² historic core in Zhanjiang, still relies on manual experience for industry-space matching, causing low green-area usage (35 %) and stagnant revenue. We propose STGNN-ISM, the first spatio-temporal graph neural network that embeds “spatial-gene” features (architecture, greenery, cultural activity) with multi-industry flows. Trained on 247 k field records (2023), it delivers real-time resource-allocation decisions in ≤ 90 ms.

Results

Matching accuracy: 89.2 % (test) ↑18.7 pp vs LSTM.
Latency: 42 ms single / 89 ms batch (≤ 100 ms real-time).
Revenue lift: cultural-tourism +23.5 %, creative +19.2 %, homestay +15.8 %; overall +19.5 %.
Green-area utilisation: 35 % → 78 %; surrounding creative shops sales +28.5 %.
Robustness: -5.3 % accuracy under 20 % Gaussian noise.

Objectives

1. Quantify the three tech dimensions of industrial-function digitalisation.
2. Build STGNN-ISM to dynamically match spatial genes with tourism, creative & retail nodes.
3. Validate ≥ 15 % revenue uplift and ≥ 75 % space-utilisation on site.

Conclusion

STGNN-ISM converts “space-industry” coupling into a learnable graph, providing an end-to-end, low-latency decision engine for historic districts. It simultaneously boosts heritage protection, green-quality targets (“Green & Beautiful Zhanjiang”) and business revenue, offering a replicable path for digital regeneration of old streets.

References

[1]Zheng, H. W. & Lin, A. J. Research on the construction model of smart communities based on data acquisition and supply in urban renewal units. *Information Technology in Civil Engineering and Architecture*, vol. 16, pp. 35-39, June 2024.

[2]Zhang, H., Li, B. H. & Dou, Y. D. Research on the characteristics and mechanism of the evolution of traditional village landscape restoration under the power of digital technology - a case study of Zhangguying Village in Yueyang City. *Journal of Natural Resources*, vol. 39, pp. 1797-1814, August 2024.

[3]Zhang, B. R. & Hu, M. Q. Research on the spatiotemporal characteristics and influencing factors of the coupling coordination of digital economy and ecological economic efficiency in China's three major urban agglomerations. *Journal of Yunnan Agricultural University (Social Sciences)*, vol. 18, pp. 26-35, April 2024.

[4]He, Z. Y., Liu, J., Tian, J. X. & Gao, C. X. Research on the digital protection and inheritance of traditional villages based on the whole life cycle. *Small Town Construction*, vol. 41, pp. 46-52, October 2023.

[5]Huang, H. P. & Chen, F. M. Research on the construction of spatiotemporal big data system framework for urban agglomeration construction and management. *Remote Sensing Technology and Applications*, vol. 38, pp. 443-453, February 2023.

[6]Bai, T., Deng, S. Q., Xiong, H., Sun, K. M., Li, W. B. & Liu, J. Y. Research and application of urban renewal unit identification method based on artificial intelligence and remote sensing technology. *Journal of Natural Resources*, vol. 38, pp. 1517-1531, June 2023.

[7]Liu, X. S. & Zhou, D. Practical exploration and enlightenment of urban renewal in the UK under cultural dominance. *Economic Geography*, vol. 42, pp. 64-71, June 2022.

[8]Peng, W. B. & Cao, X. T. Spatiotemporal differentiation of ecological resilience under the influence of urban renewal and its impact effects: A case study of the Changsha-Zhuzhou-Xiangtan urban agglomeration. *Economic Geography*, vol. 43, pp. 44-52, October 2023.

[9]Zhao, W. M., Li, Z. & Li, Y. Y. Review and Prospect of Urban Renewal Research in Contemporary China: A Coordinated Reflection on Institutional Supply and Property Rights Challenges. *Journal of Urban Planning*, vol. 5, pp. 92-100, May 2021.

[10]Li, S. L. & Liu, X. Y. Policy Effect Evaluation of Urban Renewal: A Case Study of Shenzhen. *World Economy*, vol. 45, pp. 179-203, September 2022.

[11]Deng, M. Y. & Deng, C. F. Implementation Path of Urban Renewal from the Perspective of Interest Coordination: A Case Study of Urban Village Renovation in Guangzhou. *Tropical Geography*, vol. 41, pp. 760-768, April 2021.

Materials & Methods

- 240 spatial nodes (50 m grid) \times 4 industry types = 1 440 graph nodes.
- Spatial-gene vector 128-D ($\alpha=0.4$ heritage, 0.3 green, 0.3 culture).
- Industry vector 48-D flow + 7-D sales + Occ-rate; edge weight $\lambda=0.4$.
- Temporal attention window $T = 7$ days; GATConv 64-D embedding.
- Multi-objective loss: 40 % space-util error + 50 % revenue error + 10 % L2.
- Hardware: RTX-4090, PyTorch 2.1; data split 7:2:1.

Acknowledgements or Contact

This work is supported by School of Economics and Finance Zhanjiang University of Science and Technology and “Green & Beautiful Zhanjiang”.

Corresponding author: Tang Li 124744024@qq.com